METHOD FOR ²¹⁰Pb MEASUREMENT IN AIR BASED ON LSC

Michael Buzinny • Yurij Soroka

The Marzeev Institute of Hygiene and Medical Ecology, Academy of Medical Sciences of Ukraine, Popudrenko str. 50, 02094 Kiev, Ukraine. Email: mbuz@ukr.net.

ABSTRACT. ²²²Rn decay causes ²¹⁰Pb and ²¹⁰Po to be present in the atmosphere. Background levels for both radionuclides average 3.7×10^{-4} and 3.7×10^{-5} Bq m⁻³, respectively. Some processes and situations cause a local increase of both radionuclides' concentrations of up to 10–100 times the normal levels. Due to the additional irradiation doses to the population, ²¹⁰Pb has radiological significance. Taking into account these reported levels, we estimate a minimum required sample volume of 300–500 m³. We apply 2 aerosol samplers (TF1A-2 and Staplex Inc.) coupled with a 4" diameter filter (synthetic Petrianov fabric) for the sites at Zhovty Wody and Dneprodzerzhinsk, both in the Dnipropetrovs'k region, as well as background samples from Kiev. Sample destruction allows one to prepare and measure LS total beta spectra with observed ²¹⁰Pb betas. The total beta spectra present varying combinations of beta components that require complicated analyses. We tested and applied beta-spectra decomposition to separate the ²¹⁰Pb beta peak for calculating corresponding activities.

INTRODUCTION

²¹⁰Pb ($T_{1/2}$ = 22.7 yr) and ²¹⁰Po ($T_{1/2}$ = 138.39 d) are present in the atmosphere due to ²²²Rn decay. The National Council on Radiation Protection and Measurements [NCRP] Report 94 (NCRP 1988) estimates the background levels for both radionuclides as 3.7×10^{-4} and 3.7×10^{-5} Bq m⁻³, respectively. Later publications confirm the average ²¹⁰Pb background level as 0.5×10^{-4} Bq m⁻³ (Realo et al. 2004; UNSCEAR 2000). Some processes (fires, tobacco smoke, etc.) and some technological activities (mines, mining enrichment plants, heating and power stations) cause background levels to increase 10–100 times (Cloarec et al. 1995; Lambert et al. 1991; UNSCEAR 2000). Corresponding irradiation doses could be significant and cause health risks.

SAMPLE COLLECTION

We analyzed the ²¹⁰Pb in air within the framework of radiological estimates of environmental impact and potential irradiation doses to the public from uranium processing sites. The sampling sites selected were Zhovty Wody and Dneprodzerzhinsk (Figure 1), both located in the Dnipropetrovs'k region, and we used samples from Kiev as a background. We used 2 aerosol samplers, TF1A-2 and Staplex Inc., coupled with 4" diameter filter. A synthetic Petrianov fabric was used as filter matter. Taking into account the above-mentioned background levels, we estimated the minimum required air sample volume to be 300–500 m³ (Buzinny et. al. 2005). Actual air samples collected ranged from 270–1100 m³.

SAMPLE PREPARATION

Aerosol filters were processed at least 2–3 weeks after sampling, allowing short-lived radon daughters to decay. Details of the sample preparation technique used for analyzing filters are reported elsewhere (Buzinny et al. 2005). Petrianov fabric was first compacted by acetone dissolving and then dried. Next, filter material residue was ashed in an oven at 500 °C. Ashes were dissolved in 25 mL of 6M HNO₃ while boiling for 30 min in glass vials, and undissolved particles were filtered. The resulting solution was evaporated; the residue was dissolved in 2 mL of 1M HNO₃ and placed into LS vials together with 2 mL of distilled water, which was used for washing the glass. The LS cocktail Optiphase HiSafe 3 was used for simultaneously counting and storing alpha and beta spectra utilizing the LS spectrometer Quantulus 1220TM. Destroying filter material at high temperatures causes additional disequilibrium between ²¹⁰Pb and ²¹⁰Po. Yet, we take into account only ²¹⁰Pb, which is

^{© 2006} by the Arizona Board of Regents on behalf of the University of Arizona LSC 2005, Advances in Liquid Scintillation Spectrometry Edited by Stanisław Chałupnik, Franz Schönhofer, John Noakes. Pages 157–163.

158 M Buzinny & Y Soroka

applicable for most tasks. After preparing and counting the filter samples, we find an intense spectrum shift due to quenching in Teflon[®] vials. Our research indicates that polyethylene vials are more transparent and thus more applicable for quenched samples.

Figure 1 Sampling sites of uranium ore deposits and processing plants in Ukraine

SPECTRA ANALYSES

Predictably, most of our attention was focused on spectra analysis. We found that most samples have a clear ²¹⁰Pb peak. As expected, samples are in disequilibrium between ²¹⁰Pb and ²¹⁰Bi, as previously reported (Buzinny et. al. 2005) in sample spectra for the Kiev site with the presence of other radionuclides. We require separation of the ²¹⁰Pb contribution in the sample beta spectrum itself (Buzinny et. al. 2005). To accomplish this, we subtract the smooth part of the beta spectrum produced by ²¹⁰Bi or other radionuclides, i.e. ¹³⁷Cs or even ⁹⁰Sr+⁹⁰Y, from the total beta spectrum. For spectra decomposition, we apply a similar approach to what we have published previously (Buzinny et al. 1993). We practiced with the spectra of other radionuclides for different quenching conditions, since a pure ²¹⁰Bi spectrum could hardly be measured without chemical separation, i.e. ⁴⁰K and ¹³⁷Cs spectra. ¹³⁷Cs spectra were preferable; we describe below the ¹³⁷Cs quenched spectra set.

ALGORITHM

All sample spectra processing was performed using the Matlab[®] package by Mathworks, Inc. Sample processing begins by measuring calibrated samples of ²¹⁰Pb and ¹³⁷Cs as well as background spectra for different conditions of sample quenching. Next, we measured sample spectra. Each sample spectrum was prepared for mathematical processing (i.e. formatting to 1 column), and during processing, we normalized all spectra to be expressed as counts per second (cps).

To analyze each sample spectrum, we determined the sample quenching level SQP(E) by selecting the nearest background and 137 Cs spectra pair. We then subtract the background (see Equation 1) and perform the spectrum decomposition:

$$S = Sq - BG \tag{1}$$

where S is the net sample spectrum; Sq is the sample's measured spectrum; and BG is the corresponding background spectrum.

We then recalculate the complete modeled spectrum for channels 1-1024 according to the smooth spectrum shape between channels 350–500 and the corresponding ¹³⁷Cs spectrum interval (see Equations 2 and 3).

$$X = B(rng,1) / S(rng)$$
⁽²⁾

$$SI = B(:,1) \times X \tag{3}$$

where X is the calculated count rate for the "corresponding" radionuclide in the sample; B is the spectra matrix, which includes the calibrated normalized spectra for some radionuclides of possible interference (^{137}Cs , ^{40}K , $^{90}Sr+^{90}Y$) (we used ^{137}Cs); and *rng* is the region of interest, the part of the spectrum between channels 350 and 500.

To obtain the net peak of ²¹⁰Pb betas, we subtract the modeled spectrum from the sample spectrum:

$$S2 = S - S1 \tag{4}$$

Finally, we calculate the optimized window for ²¹⁰Pb calculation to be 130–320. This range is wide enough for high efficiency and sharp enough to prevent interference of possible sample luminescence. The spectra decomposition rate is shown in Figure 1 for the ²¹⁰Pb calibration source and for 1 aerosol filter sample. The electron peak of the calibrated ¹³⁷Cs spectrum is clearly visible in each figure.

SPECTRA STANDARDIZATION

Sample quenching corresponds to the variation of counting efficiency and spectra shape, which are standardized by the external standard principle and corresponding parameter SQP(E) used in Quantulus 1220. Our experience in finding the low-energy spectrum range corresponding to 210 Pb betas has taught us to pay close attention to changes in efficiency. Spectrum shape changes are smooth enough to use quenched spectra ranged for 10 units of SQP(E), corresponding to 8 spectra sets for the applicable SQP(E) range of 720–800. After selecting the appropriate spectra set, we proceeded with each sample spectrum. Precise spectrum standardization includes a shift to the left or right side for a range of up to 8 channels. The spectra shift actually plays a minor role in spectra decomposition and can be ignored for channels 1–3.

Counting efficiency is well defined in the wide SQP(E) range for the ²¹⁰Pb standard solution in equilibrium up to ²¹⁰Po, which could be precisely measured on Quantulus 1220 using alpha-beta separation. The corresponding ²¹⁰Pb counting efficiency trend for sample quench is shown in Figure 2.

OTHER APPLICATIONS

When we applied the spectra decomposition to the Chernobyl filters, we were able to separate and clearly see the ²⁴¹Pu spectrum. We thus could compare the ²⁴¹Pu spectrum to the sample's total alpha spectrum, or even see both ²⁴¹Pu and ²¹⁰Pb betas at the same time for another sample (see Figure 3).

Figure 2 Decomposition of LS beta spectra. Top: 1) 210 Pb+ 210 Bi; 2) corresponding 137 Cs used to fit smooth shaped 210 Bi; and (3) fitted 210 Pb peak. Bottom: 1) sample total beta; 2) corresponding 137 Cs; and 3) fitted 210 Pb peak. The conversion electron peak for the calibrated 137 Cs spectrum is clearly visible in each figure.

RESULTS

We tested an approach for sample LS spectra by analyzing ²¹⁰Pb. This method is based on the decomposition of sample spectra using the corresponding ¹³⁷Cs beta spectrum shape for low energies, i.e. between of 350–500 channels. We tested the spectra decomposition system for some spectra of ²¹⁰Pb calibration source for different quenching conditions, as well as for spectra of measured aerosol filters from the sampling sites of Kiev, GW, and PCP site. The ²¹⁰Pb calibration source provides results that allow the quench correction for the measured filters' spectra. By knowing the different radionuclides that cause interference for ²¹⁰Pb determination, as well as levels of interfering

Figure 3 ²¹⁰Pb counting efficiency trend for filter sample quench

Figure 4 Decomposition of LS beta spectrum for the Chernobyl aerosol filter. Top: 1) total beta and 2) total alpha spectra. Bottom: 1) decomposition of low-energy beta spectrum (²⁴¹Pu+²¹⁰Pb) compared to 2) corresponding sample's total alpha (²³⁹⁺²³⁹⁺²⁴⁰Pu and ²¹⁰Po).

radionuclides for different sites when we process with spectra, we are able to determine the corresponding estimates of total beta activity, ²¹⁰Pb level, ²¹⁰Bi level, ¹³⁷Cs level if appropriate, and discover the presence high beta emitters in total beta spectrum, i.e. ⁹⁰Sr+⁹⁰Y.

162 M Buzinny & Y Soroka

All filter activity data obtained are presented at Table 1 and Figure 5. A wide range of ²¹⁰Pb is seen in air-specific activity variation.

1000) histogram for	Air volume	210 Pb × 10 ⁻⁴
Nr	Site	Sampling data	(m^3)	(Bq m^{-3})
		Sampling date		-
1	Kiev	28.04.2004	425	1.63
2	Kiev	30.04.2004	613	0.77
3	Kiev	25.05.2005	233	15.2
4	Kiev	26.05.2005	539	4.61
5	Kiev	27.05.2005	479	4.31
6	Kiev	30.05.2005	533	6.55
7	Kiev	31.05.2005	910	8.46
8	Kiev	01.06.2005	667	2.83
9	Kiev	02.06.2005	554	2.38
10	Kiev	03.06.2005	336	4.96
11	Kiev	16.06.2005	446	7.87
12	Kiev	21.06.2005	1090	2.63
13	Kiev	22.06.2005	580	2.65
14	Kiev	23.06.2005	589	6.06
15	Zhovty Wody	22.07.2005	279	11.3
16	Zhovty Wody	22.07.2005	321	2.52
17	Dnieprodzherzhinsk	28.07.2005	271	12.1
18	Dnieprodzherzhinsk	28.07.2005	312	0.74
19	Dnieprodzherzhinsk	27.07.2005	186	1.10
20	Dnieprodzherzhinsk	29.07.2005	261	5.14
21	Dnieprodzherzhinsk	29.07.2005	301	0.85
22	Dnieprodzherzhinsk	25.08.2005	516	6.87
23	Zhovty Wody	14.10.2005	441	16.4
24	Zhovty Wody	14.10.2005	508	15.4
25	Dnieprodzherzhinsk	09.11.2005	392	23.6
26	Dnieprodzherzhinsk	09.11.2005	451	20.4

Table 1 ²¹⁰Pb activity (Bq m⁻³) histogram for aerosol filters analyzed.

CONCLUSIONS

We developed and tested a comprehensive LS-based tool for ²¹⁰Pb beta spectra separation, allowing us to calculate the activity in the aerosol filters. The approach allows the ²¹⁰Pb determination in the presence of unstable ²¹⁰Bi or even other radionuclides, such as ¹³⁷Cs and ⁹⁰Sr+⁹⁰Y.

A similar approach could be applied for ²⁴¹Pu beta separation from the total beta LS spectra of aerosol filters from Chernobyl, which have a high activity of ¹³⁷Cs and ⁹⁰Sr+⁹⁰Y. The main advantage in analyzing the total beta spectra is the ability to discover any new component of beta activity.

Calculated ²¹⁰Pb activities for the studied filters vary from 8.4×10^{-5} to 2.3×10^{-3} Bq m⁻³. The measured data are well defined, showing a wide contrast and wide uncertainty. Thus, to define the origin of ²¹⁰Pb using short-collection-time filters requires gathering 2 separate filters collected at the same time using the same technique in 2 different locations under similar weather conditions, with 1 used as a background and 1 to be studied.

In the near future, we plan to compare measurements performed by LS counting total beta spectra decomposition to measurements by direct gamma spectroscopy.

ACKNOWLEDGMENTS

We express our thanks to Viktor Sakhno, Maxim Romanchenko, Olexij Podrjezov, and Mikhail Soroka for fieldwork during filter sampling, and Larisa Trojan and Olena Phedorenko for chemical sample preparation. Our special thanks to Vladimir Demchuk and Vladimir Kashpur who gave us Chernobyl-related filters for estimation.

REFERENCES

- Buzinny MG, Zelensky AV, Los' IP. 1993. Beta-spectrometric determination of ⁹⁰Sr in water, milk and other samples with ultra low-level liquid scintillation counter. In: Noakes JE, Schönhofer F, Polach HA, editors. *Liquid Scintillation Spectrometry 1992*. Tucson: Radiocarbon. p 439–46.
- Buzinny M, Soroka Y, Trojan L, Phedorenko O, Podresov O, Soroka M. 2005. Estimation of expressmethod possibility for measurement of Pb-210 in air. *Hygiene of Settlements*. Kiev: Institute of Hygiene and Medical Ecology. Issue 45:284–6. In Ukrainian.
- le Cloarec MF, Ardouin B, Cachier H, Liousse C, Neveu S, Nho E-Y. 1995. ²¹⁰Po in savanna burning plumes. *Journal of Atmospheric Chemistry* 22:111–22.
- Lambert G, le Cloarec MF, Ardouin B, Bonsang B. 1991. Long-lived radon daughters signature of savanna fires. In: Levine JS, editor. Proceedings of the Conference: Global Biomass Burning. Section II: Biomass

Burning in Tropical Ecosystems. Cambridge, USA: MIT Press. p 181–4.

- National Council on Radiation Protection and Measurements [NCRP]. 1988. Exposure of the population in the United States and Canada from natural background radiation [NCRP Report 94]. Washington, D.C.: NCRP.
- Realo E, Realo K, Lust M, Koch R, Uljas A. 2004. Lead-210 in air and in surface soil in NE Estonia. In: Full Papers of IRPA-11, 11th International Congress of the International Radiation Protection Association. Madrid, Spain, 23–28 May 2004. Paper online at http: //www.irpa11.com. Session 6a, 56.
- United Nations Scientific Committee on the Effects of Atomic Radiation [UNSCEAR]. 2000. Sources and effects of ionizing gradiation. Volume I: Sources. New York: United Nations. 17 p. URL: http://www.unscear.org/reports/2000_1.html.